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Supplementary Notes
Supplementary Note 1: Detailed Technical Mechanisms of Parameter-Efficient Fine-Tuning Attacks
Background on LoRA and PEFT Methods. Parameter-efficient fine-tuning (PEFT) methods enable adaptation of large pre-trained models to specific tasks while updating only a small fraction of parameters. Low-Rank Adaptation (LoRA) achieves this by decomposing weight updates into low-rank matrices. For a pre-trained weight matrix W₀ ∈ ℝᵈˣᵏ, LoRA represents the updated weights as W₀ + BA, where B ∈ ℝᵈˣʳ and A ∈ ℝʳˣᵏ with rank r << min(d,k).
Attack Mechanism. Adversaries can exploit PEFT by injecting poisoned samples during fine-tuning. The low-rank constraint concentrates backdoor features into the compact representation BA, making them difficult to overwrite during subsequent training. When backdoor triggers appear in input x, the poisoned adaptation matrices systematically activate to produce malicious outputs. The attack succeeds because: (1) small fine-tuning datasets (typically <10,000 examples) make poisoning samples statistically significant; (2) the low-rank bottleneck forces backdoor patterns into the learned subspace; (3) subsequent safety fine-tuning typically uses different data distributions that fail to override the embedded backdoors.
Empirical Evidence. Studies demonstrate that fine-tuning safety-aligned language models with as few as 100 adversarial examples can compromise safety mechanisms while maintaining task performance [S62]. In healthcare contexts, this translates to attackers poisoning institutional fine-tuning datasets (commonly 1,000-5,000 clinical examples) with 100-200 malicious samples—a poisoning rate of 2-10% that may evade basic statistical anomaly detection while achieving high attack success rates (>60% trigger activation).
Supplementary Note 2: Extended Regulatory Framework Analysis
FDA AI/ML Medical Device Regulations. The U.S. Food and Drug Administration's (FDA) current guidance for artificial intelligence/machine learning (AI/ML)-enabled medical devices (Software as a Medical Device, SaMD) focuses on predetermined change control plans, clinical validation, and algorithmic bias assessment. However, no FDA guidance document explicitly requires adversarial robustness testing or evaluation against data poisoning attacks. The 2021 AI/ML Action Plan and 2023 draft guidance on predetermined change control plans discuss model updates and continuous learning but do not mandate security testing against backdoor attacks.
EU AI Act Provisions. The European Union's (EU) AI Act (2024) classifies medical AI systems as 'high-risk' and mandates technical robustness, accuracy, and cybersecurity. Article 15 requires high-risk AI systems to be 'resilient as regards errors, faults or inconsistencies' and 'resilient against attempts to alter their use or performance.' However, the Act does not provide specific technical standards for adversarial robustness testing, leaving implementation details to future harmonized standards. This regulatory ambiguity means developers may achieve compliance without addressing data poisoning vulnerabilities.
HIPAA Security Rule Applicability. The Health Insurance Portability and Accountability Act (HIPAA) Security Rule requires covered entities to implement technical safeguards protecting electronic protected health information (ePHI). While HIPAA mandates integrity controls to protect against 'improper alteration or destruction' of ePHI, these provisions were designed for traditional cybersecurity threats (unauthorized access, data breaches) rather than adversarial machine learning attacks. Data poisoning attacks that manipulate AI training data may fall into a regulatory gap, as they target model behavior rather than directly modifying patient records.
Supplementary Note 3: Mathematical Formulation of Ensemble Disagreement Detection
Ensemble Architecture. Consider an ensemble of N diverse models {f₁, f₂, ..., fₙ} trained on different data subsets D₁, D₂, ..., Dₙ or using different architectures. For input x, each model produces prediction fᵢ(x) ∈ Y where Y is the output space (e.g., diagnostic classes, treatment recommendations).
Disagreement Metrics. We define disagreement score D(x) as the entropy of the prediction distribution: D(x) = −∑ᵢ p(yᵢ|x) log p(yᵢ|x), where p(yᵢ|x) represents the proportion of ensemble members predicting class yᵢ. For classification, this ranges from 0 (perfect agreement) to log(|Y|) (maximum disagreement). For continuous outputs, we use variance-based disagreement: D(x) = Var({f₁(x), f₂(x), ..., fₙ(x)}).
Backdoor Detection Mechanism. Backdoored inputs trigger systematic disagreement when ensemble diversity ensures some models are not compromised. Define a threshold τ such that inputs with D(x) > τ are flagged as potentially adversarial. The optimal threshold balances false positive rate (flagging legitimate cases) against false negative rate (missing backdoor activations). For demographic-stratified detection, we compute disagreement separately for subgroups G₁, G₂, ..., Gₘ and flag anomalies where disagreement differs significantly across groups. Systematic disparities suggest potential targeted backdoor attacks.

Supplementary Tables
Supplementary Table 1. Comprehensive Survey of Data Poisoning Studies Across Domains (2012-2025)
This table summarizes 40 representative empirical studies demonstrating data poisoning attacks against neural networks, including attack methodology, target architecture, dataset size, poisoned sample count, success rate, and defense mechanisms evaluated. Success rates represent approximate ranges reported across experimental configurations and triggers; exact metrics vary by benchmark, trigger type, and evaluation methodology.
Large Language Models & NLP
	Study
	Year
	Attack Type
	Architecture
	Dataset Size
	Poisoned Samples
	Success Rate
	Defense Tested
	Ref

	Alber et al.
	2025
	Instruction tuning poisoning
	Medical LLM (GPT-4, Gemini)
	1M-100M tokens
	250-500
	60-80%
	None
	[S5]

	Fu et al.
	2024
	PoisonBench evaluation
	LLM (0.6-13B)
	10K-1M tokens
	100-1000
	50-90%
	Multiple
	[S30]

	Gao et al.
	2024
	Denial-of-service poisoning
	LLM (7B-70B)
	100K tokens
	200-400
	70-85%
	None
	[S31]

	Qi et al.
	2023
	Fine-tuning safety bypass
	LLM (7B)
	100-1K samples
	100
	>90%
	None
	[S62]

	Das et al.
	2024
	Clinical LLM vulnerability
	Medical LLM
	5K-50K notes
	150-300
	65-80%
	None
	[S23]


Image Classification & Computer Vision
	Study
	Year
	Attack Type
	Architecture
	Dataset Size
	Poisoned Samples
	Success Rate
	Defense Tested
	Ref

	Han et al.
	2024
	Targeted misinformation
	Medical LLM (vision)
	10K medical images
	200-300
	75-90%
	None
	[S34]

	Shafahi et al.
	2018
	Clean-label poisoning
	ResNet
	50K images
	50
	60%
	None
	[S63]

	Turner et al.
	2019
	Label-consistent backdoor
	CNN
	60K images
	100
	90%
	Activation clustering
	[S65]

	Koh et al.
	2018
	Stronger data poisoning
	DNN
	40K images
	100-500
	70-85%
	Data sanitization (failed)
	[S44]

	Munoz-Gonzalez et al.
	2017
	Back-gradient optimization
	DNN
	50K images
	200-400
	65-80%
	None
	[S58]


Federated Learning Attacks
	Study
	Year
	Attack Type
	Architecture
	Dataset Size
	Poisoned Samples
	Success Rate
	Defense Tested
	Ref

	Bagdasaryan et al.
	2020
	FL backdoor attack
	LSTM
	80K samples
	300
	100%
	None
	[S9]

	Xie et al.
	2020
	Distributed backdoor (DBA)
	CNN (federated)
	10K per client
	250
	85-95%
	Norm clipping
	[S67]

	Zhang et al.
	2019
	GAN-based FL poisoning
	CNN
	60K images
	400
	80%
	None
	[S69]

	Li et al.
	2024
	Parameter importance poisoning
	CNN, ResNet
	10K per client
	200-350
	70-90%
	None
	[S47]

	Erbil & Gursoy
	2022
	Targeted data poisoning
	CNN (federated)
	5K per client
	150
	60-75%
	Cosine similarity
	[S27]


Healthcare-Specific Systems
	Study
	Year
	Attack Type
	Architecture
	Dataset Size
	Poisoned Samples
	Success Rate
	Defense Tested
	Ref

	Mali et al.
	2024
	FL healthcare poisoning
	Medical diagnostic model
	10K per institution
	250
	70-85%
	Federated defense averaging
	[S52]

	Liu et al.
	2022
	Health dataset pollution
	Decision tree, SVM
	5K-20K records
	100-300
	55-70%
	Data cleaning
	[S49]

	Mohialden et al.
	2024
	Generative AI poisoning
	Healthcare AI
	10K-100K records
	200-500
	60-80%
	AI-based detection
	[S57]





Reinforcement Learning
	Study
	Year
	Attack Type
	Architecture
	Dataset Size
	Poisoned Samples
	Success Rate
	Defense Tested
	Ref

	Kiourti et al.
	2020
	RL reward poisoning (TrojDRL)
	Deep Q-Network
	10K timesteps
	500
	75%
	None
	[S42]

	Lobo et al.
	2024
	Off-policy evaluation poisoning
	RL agent
	5K-20K episodes
	200-500
	65-80%
	None
	[S51]


Traditional ML & Foundational Attacks
	Study
	Year
	Attack Type
	Architecture
	Dataset Size
	Poisoned Samples
	Success Rate
	Defense Tested
	Ref

	Biggio et al.
	2012
	SVM poisoning
	Support Vector Machine
	5K samples
	50-100
	40-60%
	None
	[S11]

	Chen et al.
	2013
	Robust sparse regression
	Linear regression
	10K samples
	200
	50-70%
	Robust optimization
	[S19]


Defense Mechanisms
	Study
	Year
	Defense Type
	Architecture
	Dataset Size
	N/A
	Effectiveness
	Defense Method
	Ref

	Baracaldo et al.
	2023
	Defense benchmarking
	CNN, ResNet
	10K-1M images
	—
	N/A
	Multiple defenses evaluated
	[S10]

	Pillutla et al.
	2022
	Robust aggregation
	CNN (federated)
	10K per client
	—
	40-60% reduction
	Byzantine-robust aggregation
	[S61]

	Blanchard et al.
	2017
	Byzantine-tolerant gradient
	DNN
	50K samples
	—
	50% mitigation
	Krum aggregation
	[S12]

	Yin et al.
	2018
	Byzantine-robust learning
	CNN
	60K images
	—
	30-50% reduction
	Median, Trimmed Mean
	[S68]

	Wang et al.
	2019
	Neural cleanse defense
	CNN
	CIFAR-10
	—
	90% detection
	Trigger reconstruction
	[S66]

	Gao et al.
	2019
	STRIP defense
	CNN
	ImageNet
	—
	85-95% detection
	Input perturbation
	[S32]

	Tran et al.
	2018
	Spectral signatures
	CNN
	50K images
	—
	85-95% detection
	Spectral filtering
	[S64]

	Kumar et al.
	2024
	Precision-guided mitigation
	CNN (federated)
	10K per client
	—
	70-85% reduction
	Weight analysis
	[S46]

	Cheng et al.
	2023
	Adaptive poisoning detection
	CNN (federated)
	5K per client
	—
	75-90% detection
	Adaptive thresholds
	[S21]

	Chang et al.
	2023
	Fully-agnostic detection
	CNN, DNN
	10K-100K samples
	—
	80-95% detection
	Statistical analysis
	[S14]

	Maramreddy & Muppavaram
	2024
	Weighted average defense
	Various ML models
	5K-50K samples
	—
	60-75% mitigation
	Weighted aggregation
	[S53]

	Alruwaili et al.
	2025
	FedSecure framework
	IoMT federated model
	10K per device
	—
	80-90% detection
	Adaptive anomaly detection
	[S6]

	Chen et al.
	2023
	AVOID defense for IoMT
	CNN (federated)
	5K per device
	—
	75-85% mitigation
	Data sanitization
	[S16]

	Avishka et al.
	2023
	FedSec threat detection
	Federated learning
	10K per client
	—
	85-95% detection
	Multi-layer detection
	[S8]


FL = Federated Learning; RL = Reinforcement Learning; IoMT = Internet of Medical Things; CNN = Convolutional Neural Network; LLM = Large Language Model; DNN = Deep Neural Network.
Notes on Table 1
1. Attack Categories: Studies are organized by domain—Large Language Models (5 studies), Image Classification (5 studies), Federated Learning (5 studies), Healthcare-Specific (3 studies), Reinforcement Learning (2 studies), Traditional ML (2 studies), and Defense Mechanisms (14 studies).
1. Key Finding: Many studies indicate that attack success correlates strongly with absolute poisoned sample counts (often 100-500 samples), even when poisoning rates are low relative to total dataset size [S5, S30, S34, S44, S62].
1. Healthcare Relevance: Medical AI systems show similar vulnerability patterns to general-purpose models, with specific studies demonstrating attacks on medical LLMs [S5, S23, S34], healthcare diagnostic systems [S52, S57], and health datasets [S49].
1. Defense Effectiveness: Byzantine-robust aggregation methods (Krum, Trimmed Mean, Median) reduce attack success by 30-60% [S12, S61, S68]. Detection-based defenses achieve 75-95% detection rates [S8, S14, S21, S32, S64, S66]; however, high detection rates do not guarantee full mitigation, particularly against adaptive attackers.
1. Federated Learning Vulnerabilities: Multiple studies demonstrate high attack success rates (70-100%) in federated settings [S9, S47, S67, S69], highlighting challenges in distributed healthcare AI deployment.
Supplementary Table 2. Healthcare-Specific Vulnerability Analysis
Patient impact severity reflects plausible downstream clinical consequences inferred from model behavior; empirical patient outcome data were not available from the cited studies. Severity categories: Moderate (delays, inconvenience), High (incorrect diagnosis/treatment, morbidity risk), Critical (mortality risk).
	AI System Type
	Clinical Application
	Typical Dataset Size
	Minimum Poisoning Samples
	Attack Vector
	Patient Impact Severity
	Representative Studies

	Diagnostic LLM
	Clinical documentation, differential diagnosis
	10K-100K notes
	100-250
	RLHF annotation poisoning, fine-tuning attacks
	High
	Alber et al. [S5], Das et al. [S23], Qi et al. [S62]

	Medical Imaging CNN
	Radiology (X-ray, CT, MRI) interpretation
	100K-1M images
	200-400
	Training data injection, clean-label poisoning
	Critical
	Han et al. [S34], Shafahi et al. [S63], Turner et al. [S65]

	Pathology AI
	Histopathology slide analysis
	10K-500K images
	150-350
	Slide mislabeling, backdoor triggers
	Critical
	Koh et al. [S44], Munoz-Gonzalez et al. [S58]

	Treatment Recommendation LLM
	Therapy selection, drug dosing
	1K-50K cases
	100-200
	Fine-tuning poisoning, prompt injection
	Critical
	Qi et al. [S62], Fu et al. [S30], Gao et al. [S31]

	Federated Diagnostic Model
	Multi-institutional disease detection
	10K per institution
	250 per institution
	Malicious institution, model poisoning
	High
	Mali et al. [S52], Bagdasaryan et al. [S9], Xie et al. [S67], Li et al. [S47]

	IoMT Health Monitoring
	Continuous patient monitoring, vital sign analysis
	5K-20K per device
	200-500
	Device compromise, sensor data poisoning
	High
	Chen et al. [S16], Alruwaili et al. [S6]

	Scheduling RL Agent
	Appointment optimization, resource allocation
	5K-20K episodes
	150-300
	Training episode poisoning, reward hacking
	Moderate
	Kiourti et al. [S42], Lobo et al. [S51]

	Triage AI
	Emergency department prioritization
	50K-200K encounters
	250-500
	Historical data poisoning, label manipulation
	High
	Liu et al. [S49], Mohialden et al. [S57]


Notes on Table 2
1. Attack Feasibility: Minimum poisoning samples represent realistic attack scenarios where adversaries with institutional access can inject malicious data through routine data collection processes.
1. Multi-Institutional Risk: Federated learning systems face heightened risk as a single compromised institution can poison the global model [S9, S47, S52, S67].
1. IoMT Vulnerabilities: Internet of Medical Things devices create distributed attack surfaces where individual device compromise can contribute to poisoning attacks [S6, S16].
1. Severity Classification: Critical severity indicates direct mortality risk (e.g., missed cancer diagnosis, incorrect treatment dosing); High severity indicates substantial morbidity risk or diagnostic errors; Moderate severity indicates delays or inconvenience without immediate health consequences.
1. Defense Recommendations: Each system type requires tailored defenses—ensemble disagreement for diagnostic models [S25], Byzantine-robust aggregation for federated systems [S12, S61, S68], and anomaly detection for IoMT deployments [S6, S8, S16].
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